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Partitioning Hilbert space into two subspaces by using orthogonal projection operators yields compact forms
for effective Hamiltonians for each of the subspaces. When one(tBpace) contains molecular bound
states and the other (tffespace) contains dissociative continua, a simple form for the non-Hermitspace
effective HamiltonianHe", can be obtained, subject to reasonable approximations. Nam@ly;: HO —

ihl'/2, whereH? is Hermitian, and the width operathf™ accounts for couplings of th®@-space levels to the
P-space continua. Thie/Q partitioning procedure has been applied in many areas of atomic, molecular, and
nuclear physics with widespread success. Inputting into this formalism ideas from random matrix theory in
order to model independent open channels yields the random nhiftimodel. Despite numerous efforts,

this model has failed to model satisfactorily the statistical transition-state theory of unimolecular decomposition
(hereafter referred to as TST) in the regime of overlapping resonances, where nearly all such reactions occur.
All statistical models of unimolecular decomposition are premised on rapid intramolecular vibrational
redistribution (IVR) for a given set of good quantum numbers. The phase space thus accessed results in a
threshold reaction rate of 4, and forK independent open channels, the rat&isp. This reaction rate
corresponds to a resonance widthkKiRp, and whenK increases, the resonances (which aré apart)

overlap. In this regime, the random matti€™ model fails because it does not introduce independent open
channels. To illustrate the source of the problem, an analysis is carried out of a simple model that is obviously
and manifestly inconsistent with TST. This model is solved exactly, and it is then put in the form of the
random matrixHe™ model, illustrating the one-to-one correspondence. This reveals the deficiencies of the
latter. In manipulating this model into the form® — iAl'/2, it becomes clear that the independent open
channels in the random matrite™ model are inconsistent with TST. Rather, this model is one of gateway
states (i.e., bound states that are coupled to their respective continua as well as to a manifold of zero-order
bound states, none of which are coupled directly to the continua). Despite the fact that the effective Hamiltonian
method is, by itself, beyond reproach, the random matd%model is flawed as a model of unimolecular
decomposition in several respects, most notably, bifurcations of the distributions of resonance widths in the
regime of overlapping resonances.

I. Introduction and Background transition
state
Some time agé; 3 Miller and Moore introduced a model for region
unimolecular decomposition that deals with quantum mechanical T E
phenomena beyond the purview of microcanonical transition- Ei{ —

state theories such as RRKM (Rice, Ramsperger, Kassel, and )

Marcus), PST (phase space theory), and SACM (statistical ‘

adiabatic channel modélf. It focuses on resonances that derive

from couplings between bound rovibronic levels and dissociative

continua of independent open reactive channels, resulting in

quasibound levels. In an earlier, influential paper by Mies and

Krauss, unimolecular decomposition had been analyzed in terms

of resonance decay in the regime where the resonances overlapsigyre 1. Energies of the transition state (TS) levels (i.e., the channel

i.e., their widths exceed their average separétion. thresholds) are denotél For a given TS level, the translational energy
Before proceeding, it is useful to clarify what is meant by in the TS region is approximately constan&at- E;. The independent

independent open channels and associated dissociative continu@pen channels accessed via their TSs extend into their continua.

In the statistical theory of unimolecular reactions, independent
open channels are accessed via corresponding transition-statgjssociation occurs (as opposed to isomerization), each inde-
(TS) levels, as indicated in Figure 1. These TS levels are the hendent open channel leads to fragments that lie in the channel’s
thresholds for the open channels. For reactions in which gissociation continuum. An independent open channel is not,
- — - - — in general, equivalent to a single resolved product state, i.e., a
Part of the special issue "Charles B. Harris Festschrift". set of quantum numbers for the fragments. It originates at its
* Corresponding author. wittig@usc.edu; (213) 74B68. .
* Present address: KLA-Tencor Corporation, One Technology Drive, 19 region and from therevolvesto a set of product quantum -
Milpitas, CA 95035. states. Thus, accessing a TS level is equivalent to accessing
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the corresponding open channel. The TS region lies along the el 7N wl N

reaction coordinate at a location that separates the parent and | 7‘ \ ] ZZ x

product spaces. o (@ oLz @
In the model of Miller and Moore, statistical properties of " o0

wave functions, resonance widths, spectral intensities, and so2 **] Gl

forth are justified on the basis of physical arguments, and ideas &% 005 A% 005

from random matrix theo®® are enlisted. The statistical 0041 004+

analyses are based on seminal work of Porter and THethas 0021 002

that reconciled experimental data in the field of nuclear physics. o0 : ; . om : . ,

Specifically, fluctuations (i.e., erratic changes from one reso- § 8

nance to the next) had been noted for widths associated with o«{ /7Y o] /]

the following: (i) low-energy neutron capture by heavy target  on/ 7 S‘ (b) 012 ]Z S‘ )
nuclei, (i) fission, and (iii) radiation. Previous work by Hughes 010 010
and Harvey had shown, through a compilation of most of the — o]
available data, that the widths for (i) could be fitted to a ;é 006 ] 006
x-squared distribution having between one and two degrees of ] 004 ]
freedom. In this work, the term “degrees of freedom” referred
to the mathematical form of thesquared distributiof! Later,

Miller and Moore showed that these degrees of freedom are 0 g 2 o 1oy 2 3
equivalent to independent open channels. Though the original
fit was empirical, analyses by Porter and Thofhaovided a
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theoretical explanation of the experimental results, as well as a " 7 x © 2] 71 S‘ ®
basis for making predictions. Extension of their model to " 0]
unimolecular reactions is straightforward. z o 2"
In the 1980s, laser and nozzle expansion techniques enabled™ ** o 0061
experimental studies of unimolecular decomposition to be  °*] 0041
carried out at the state-to-state level. The first system to be  °®{ 0021
examined thoroughly was NCN& CN + NO, which adheres 00 H T T o0 ' ? T
to standard statistical modé&On the other hand, for ££0 s s

— D, + CO, it was observed that decay widths of individual Figure 2. Nearest-neighbor spacing distributions, obtained by matrix

- - diagonalization, that demonstrate the robustness of eq 1. The matrices
resonances, as well as coupling matrix elements betwgands are of dimension 2000, and the average nearest-neighbor spacing is 1.

S, fluctuate over a modest energy inter¥&l:® This was In (a—c), the diagonal elements have been obtained by using (a) a
attributed to the nature of thep ®igenstates and their corre-  wigner distribution (i.e.Pu(s), eq 1); (b) equal spacing; and (c) a
sponding resonances. Namely, chaotic vibrational dynamics givePoisson distribution (i.eRPp(s) = €79), andHj that have been chosen
rise to eigenstates whose projections on the reaction coordinatgandomly from a Gaussian normal distribution with= 1 and a mean
differ significantly from one level to the next. Expansion ©f zero. In (d-), the diagonal elements are the same as incfabut

coefficients of the §eigenstates in a separable Hamiltonian €Hs have been chosen randomly from a Gaussian normal distribution
. : N with 0% = 10. To avoid effects from the matrix boundaries, only states
basis are random, subject to normalization.

. . L with —500 < E < 500 have been used in the histograms. All results
Virtues of the model include the fact that it is simple and  are averaged over 10 matrices. The solid lines are Wigner distributions
not system-specific. Unlike other models, it deals with quantum Py(s).

fluctuation phenomena that have been observed in highly

resolved experimental studies. This work has advanced ourderivation given by Wigner for eq 1, there is little difference in

understanding of unimolecular reactions. content. Equation 1 can be readily subsumed into models of
For bound Hamiltonian systems in the chaotic regime, Wigner unimolecular processes in which the dynamics are assumed to

derived a simple formula for the distribution of nearest-neighbor pe chaotic in the region of bound states.

spacing for levels having the same good quantum numbers A pamiltonian system whose energy-level spacing distribu-

tion is in agreement with eq 1 can be said to be quantum chaotic.
Puw(s) = % S ex;{— % 52) (1) Classical chaos can be defined by exponential divergence from

one another of nearby trajectories in phase space. As no such
definition is available for the quantum counterpart, we take eq
1 as an ad hoc definition. In this regime, adding reasonable
off-diagonal matrix elements does not change the nature of the
ddynamics. For example, suppose a diagonal matrix obeys eq 1.
Adding reasonable off-diagonal matrix elements changes the

neutrons by heavy nuclei) to the vibrational levels of polyatomic €igenvalues, but the distribution of eigenvalues still obeys eq
molecules. 1, as illustrated in Figure 2. Thus, the chaotic nature of the

Random matrix theory, also introduced by Wigh®r? dynamics is robust. Note that an ergodic system (one that fills
provides a rigorous derivation of the level statistics for the thePphase space)is not necessarily chaotic. As used here, chaos
Gaussian orthogonal ensemble (GOE) of asymptotically infinite, IS & trait of the system’s dynamlcs. Itis agsumed that the chaotic
real, symmetric, random matrices and yields a result that is closeSyStems under consideration are ergodic.

wheresis the normalized spacing between adjacent levels (i.e.,
the spacing divided by the average spacing) Bagk) is the

probability density. Equation 1 is not system-specific. It can be
applied to disparate phenomena, ranging from the quasi-boun
levels of excited nuclei (prepared by the capture of low-energy

to eq 1, albeit not in closed forfmlin addition, it provides In view of the above, it can be said that the regime of chaotic
statistical measures for higher-order correlations, the most dynamics within the bound space is understood at the level
common being thé; statistic of Dyson and Meht&:21 Though required for the problem under consideration. On the other hand,

the derivation of the GOE result is more formal than the original the introduction of ideas from random matrix theory to model
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bound-continuum coupling with a number of independent open P = f InE [HE| (6)
channels is on less secure footing. n

In the Miller—Moore model, bound-continuum coupling is  here |nE'Dis the ket for thenth independent continuum at
accounted for within the theoretical framework of an effective energyE'. The indexn accounts for th@-space internal levels
Hamiltonian formalism introduced mainly by Feshb&ébften summed over in eq 3. Integration can be carried out in
referred to as the optical model or optical potential theory. The momentum or energy space using appropriate densities of
Hilbert space is divided into two subspaces by using orthogonal giateg4 putting eq 5 into eq 4 yields
projection operator® andP, and effective Hamiltonians for
the Q andP spaces are obtained by straightforward manipulation peff —

of the Schidinger equatiod?23For unimolecular reactions, an K 1 K
obvious perspective is that of molecular bound states and product ~ QHQ + QH P, PHQ (7)
dissociative continua. = K K =

Following the convention introduced earlier in analyses of E- Z P, H ;‘Pk +ie
formaldehyde dat& the Q and P labels are assigned to the m=1 =

molecular (bound) and product (continua) spaces, respectivel . - . .
( ) P ( ) sp P yAs in eq 5, indice¥, |, m, andn denote independent continua.

Applying conditions of orthogonality R\Pm = onnPn) and

Q= Z i) @) noninteraction within thé space PHPy, = 0nmPrHP;) yields
K 1
P= |E'E'| 3) H"=QHQ+ S QHP,——————— P HQ (8)
>/ & "E-PHP +ic "

The |iCare the bound states of tiggspace, and thgE'Care the

states of thé® space. The simultaneous presence of summation The corresponding Schadnger equation

and integration symbols in eq 3 indicates that continuous off

distributions of momentum states for relative translational H™Qly = EQIyU )
motion of the products, as well as discrete product internal states,
are included in thé> space.

The definition of theP-space internal levels is subtle. Were
the P space just the product space, these levels would be the
guantum states of the products. However, to be consistent with
TST, theP-space internal levels must also be defined in the
region of bound-continuum coupling. For example, for a tight
transition state, the transition-state frequencies are used for th
P space together with free motion along the reaction coordinate.
Transition-state excitations consist of quantized vibrations, each
of which constitutes an independent open channel, and an
associated translational continuum for each such channel. It iSHeffZ QHO +
assumed that the system evolves from the transition state to b
the product space and that the statistical weights used to compute f dEp (E) (QH|nE’ 1 mE| HO| (10)
rates are those of the transition state and the molecular space. nZl . E—FE +ie
Note that, throughout this paper, the term TST is used to denote

yields complex energieE when theP-space eigenvalues are
continuous, in which casd®fis non-Hermitian. In general, eq

9 is difficult to solve, becausel must be known throughout
the entire bound region, as well as the region of bound-
continuum coupling, whose very definition is nontrivial, par-
ticularly for barrierless unimolecular reactions. Though the
Jresence oE in the denominator of eq 8 in general complicates
the evaluation of matrix elements bFf in the present case,
the fact that thé>-space eigenvalues vary continuously can be
used to simplify matters, enabling eq 8 to be approximated as

the Statigtical the_ory of unimolecqlar dgcomposition- wherep,(E'" ) is the continuum density of states per unit volume
Following straightforward manipulatior?$?® the Q-space of the nth channel. By assuming tha}(E') is independent of
effective Hamiltonian is obtained E' (which is appropriate for models that treat modest energy
ranges) and that the bound-continuum coupling matrix elements
Hef = QHQ+ QHP 1 _ PHQ 4) are independent of energy, the matrix elementsi®¥foecome
E— PHP+ie ‘
It is understood that — O™, i.e.,e approaches zero as a positive WHj 0= OH O iy @V VIO (11)
quantity. Equation 4 is exact. Thougf¢" operates only in the n=

Q space, all interactions involving the space are accounted
for by the second term to the right of the equal sign. The operator
QHP passes amplitude from th@ space to thd® space. The
expression 1K — PHP + i¢), the resolvent of the Green’s
function, is equivalent to propagation in the space. The
operatorPHQ passes amplitude back to tkespace.

Reaction channels are introduced by partitioningRspace
into independent, i.e., noninteracting, continua

The density of states in eq 10 has been subsumed|dntal
and [¢ne/, each acquiring a factor gfy(E)Y2 Thus, whereas
InE Os normalized by the Kronecker(integration over space),
|¢pnellis normalized by the Dirad (integration over energy). In
the above H® (=QHQ) operates in the) space, the matrix
elementVi, = [|V|¢ned= [|H|¢neldrepresents the coupling
between a bound stafgland a unit energy interval of thah
channel continuum, and theix factor arises from integration
K of the resolvent of the Green'’s function over the continuously
P=SP (5) varying P-space eigenvalues'. The approximation given by
£ n eq 11 is valid for a large number of physical systéfshus,
the matrix elements dfi¢f can be expressed as
where the index denotes the independent contin#ais the off 0o .
number of such continua, and H ij = H i Ihrij 12 (12)
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where

K
Al = Z”ZVMVJ" (13)
n—=
K

= S ALY,

n=

(14)

Note: Vi, can be taken to be real without loss of generality, the

matrix Vi, is not square, and each open continuum channel
introduces off-diagonal coupling among the quasi-bound states.

ThehI™ in eq 14 are partial width matrices. The term partial

width is used often in atomic and nuclear physics, less so in

physical chemistry. For example, it is common for a collision

that involves many orbital angular momenta to be assigned a
partial cross section for each value of orbital angular momen-

J. Phys. Chem. B, Vol. 110, No. 40, 20089853

randomly generated matrix element4,, where N is the
dimension of theHe matrix. Referring to eqs 13 and 14, for a
given value ofn, the matrix elememtI™; is equal to ZVinVjn,
where the indicesandj each span the range-1N. For theith
row of A, the termVj, is constant and there ahevalues of
the Vjn. Likewise for the {( + 1)th row, and so on. It follows
that all rows are the same to within a multiplicative factor. Thus,
the rank of each of th&I'™™ matrices is one, and eadi™ has
but a single nonzero eigenvalue.

Independent open channels have been introduced by generat-
ing separate width matricédd™ for each open channel and
summing théil™, as indicated in eq 14. This is an energy-shell
model: open channels are added to #®¥ matrix without
introducing channel thresholds within the energy range of the
matrix. (The use of an energy shell is limiting because it
suppresses thk(E) dependence that is a signature effect of

tum25 For an isolated resonance, the total width is the sum of Unimolecular decomposition. This deficiency is, however, hardly

the partial widths for the independent open channels, just as
the total rate is the sum of the individual rates. In the convention

used herel has units of s!; the corresponding widths are
obtained by multiplyingl" by .

The formaldehyde data that served as an impetus for the
theoretical model were obtained at energies near the barrier to

D, + CO213 Stark tuning yielded high-resolution spectra in

which hundreds of resonances were observed. Many nonover-

the most egregious, as discussed below.) It has been assumed
that the addition of width matrices whose contents are obtained
independently of one another is equivalent to the inclusion of
the independent open channels of TST models of unimolecular
decomposition. It will be shown that this assumption is incorrect.
The above model has been called the random matrix optical
model. We refer to it also as the random matid% model.

When applying eqs 1214 to unimolecular decomposition,

lapping resonances were recorded, and it was seen that the rateié has been found that the regime of strongly overlapping
fluctuate markedly, e.g., by an order of magnitude over a 0.2 resonances is characterized by a bifurcation of the distribution
cmLinterval. In this regime, the degree of resonance overlap of widths into two groups, one of large widths and the other of
increases with energy from mainly nonoverlapping to overlap- small widths?*~3>In this regime, folK open channels, the fact
ping. As mentioned earlier, the fluctuations of rates have been that theAil' matrix is of rankK results inK large widths andN
attributed to chaotic dynamics of the bound region. Interference — K small widths. With increasing bound-continuum coupling,

line shapes were analyzed and fitted with the madélel.

the small widths get smaller and the large widths get |aA%&p.

The model emphasizes the connection between chaoticAS the system goes from nonoverlapping to strongly overlapping

dynamics on $and signatures provided by statistical fluctua-

resonances, the rates (defined in a way that simulates time

tions in observables in the threshold region. It was stressed thatdomain experiments) first saturate and then decrease as the

the statistical arguments are valid as long as individual
resonances can be observed. This linkit$n eqs 13 and 14

bound-continuum coupling is increased furtfer.
The above features have one thing in common: the distribu-

such that the off-diagonal matrix elements are on average smallertions of widths thus obtained?(I'), do not behave sensibly as
than the mean separation between the centers of the resonancethe bound-continuum coupling is increased. For example, they

Il. Extension to the Regime of Overlapping Resonances

A number of authors have used eqs—112 in theoretical

studies of unimolecular reactions in the regime of overlapping

resonance® 3" The numerical values put into the equations

have been chosen ad hoc. This does not pose a conceptu

difficulty for HO. Namely, the regime of quantum-chaotic

differ significantly fromy-squared distributions fdK degrees

of freedom,yk?. The number of degrees of freedom of thé
distribution is assumed to be equal to the number of independent
open channels. In the regime where bifurcation is pronounced,
the degree of overlap of the resonances is large. Nonetheless,

dhe problem emerges as soon as the resonances begin to overlap.

Figure 3 gives an example of the regime of overlapping

dynamics for bound systems is understood reasonably well, andrésonances, in whicR(T') differs more and more from tha?
eq 1 can be used to obtain a representative set of energy levelsdistribution asK increases. Though the degree of overlap in

It has been common practice in applying eqs-12 to assume
that HO is diagonal and in accord with eq 1. As mentioned

earlier, bound-continuum coupling is subtler. Nonetheless,

Figure 3d is insulfficient to result in a bifurcation for the given
set of parameters, the deviation fromyg? distribution is
inconsistent with TST. A bifurcation can always be brought

because eq 4 is rigorous, it has been assumed that the theoretic&lbout by increasing( (and concomitantiyN, with N > K) or
studies are on solid ground. Nuances concerning the energyby Increasing the bound-continuum coup_lmg per channel, as
dependence of eq 4 have been discussed, but the basic strategghown in Figure 4. Though the latter violates the @ile

has not been questioned.

When using eqs 1214, the AI' matrix is obtained by
inputting matrix elements of, indicated in eq 13, that are taken
to be either random over a fixed energy intefv&f or drawn

(Appendix A) it has been used by numerous autRér%’

The theoretical results obtained by using eq 12 are inconsis-
tent with what is known about unimolecular decomposition.
There exist numerous data on the unimolecular decomposition

from a Gaussian normal distribution with zero mean, in accord of polyatomic molecules. These indicate that distributions of

with the Porter-Thomas model. Th&;, can be taken as real
with no loss of generality.

It is significant that the matrix elements &1™ are inter-
related. For a given open channel (i.e., a given valuginfeq
13), the differenfil™; consist of binary products (Wj,) of N

rate coefficients do not bifurcate in the regime of strongly
overlapping resonances, where nearly all such reactions occur.
The rate coefficient&(E) increase monotonically witle. If
anything, the variation is boring. A bifurcation of the kind
reported in the theoretical studies would be seen in time-resolved
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Figure 3. Numerical experiments using eqs-1P4, showing distribu-
tions of the widths upon diagonalization. The matrices are of dimension
2000 with Wigner-spaced diagonals having= 1. TheV, are drawn
from a Gaussian normal distribution with zero mean; they satisfy the
27 rule: OI™ O= 1/hp. The P(AI') are the distributions of widths
obtained by diagonalizing eq 12; entries-@ are forK = 1, 5, 50,

and 200, respectively. To avoid edge effects from the matrix boundaries,

only states with—500 < E < 500 have been used in the histograms.

Wittig and Bezel

intramolecular vibrational redistribution, and subtleties have
been uncovered in other systems. However, as a general
statement, it is safe to say that there are no bifurcations. Thus,
applying eqs 1214 to unimolecular decomposition will not
yield correct results.

I1l. Source of the Problem

Equations 1214 should not be used in TST models of
unimolecular decomposition. Equation 12, wki? diagonal,
represents a system of zero-order resonances (i.e., the diagonal
matrix elements) that interact with one another via the continua
as per the off-diagonal matrix elements efihl'/2. This
mathematical structure stands in the way of satisfying the
requirement that the system evolves to products via TS levels
that are accessed independently. Open channels modeled as
—ihI'/2 matrices, though satisfying many statistical criteria, are
inconsistent with TST.

In the regime of nonoverlapping resonances, matrix repre-
sentations oHe have correct physics inputted on the diagonal,
and the off-diagonal matrix elements are too small to produce
significant effects. Thus, to a good degree of accuracy, a system
initially in the Q space decays irreversibly to tlespace, in
accord with TST. For example, see Figure 3a.

In the regime of strongly overlapping resonances, the average
magnitude of the off-diagonal matrix elements is well in excess
of the average energy separation between the centers of the
resonances. In this case, the off-diagonal matrix elements of
Al are responsible for results that contradict experiment. Strong

All results have been averaged over 10 matrices. The smooth CurveSCoupﬁngs that occur via the continua are appropriate for systems

are they-squared distributiong?.

0.5
_— X
| (a) (b)
X 20
g 3
& [
001 2 3 456728910 01 23 45678910
A/ (hl') A /<nr)
x0.5 x0.5
e (©) / (d)
x20 ~ %20
> g
§ 4
0 1 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10
AL /{pr) ar /()

Figure 4. Examples of bifurcations. The initial matrices are the same

as those used in Figure 3d, except imaginary parts have been multiplied

by 1, 3, 10, and 100 prior to diagonalization, for-@), respectively.
The smooth curves are thesquared distributiongy?.

such as adiabatic PESs coupled by strong nonadiabatic interac-
tions. However, such couplings have no place in models of
unimolecular decay. Here, the TS levels for the independent
open channels, once reached, evolve to products. There is some
reflected flux, making the transmission coefficient through the
TS region less than unity, but nothing justifies the strong
couplings between zero-order resonances, via the continua, that
appear in thedef matrix.

In TST, each open channel contributelsdlto the rate, where
e is the density of participating states. The rate Koopen
channels is given by/hp. In the random matrixd™ model,
independent continua (indicesn eqs 13 and 14) are introduced
by summing—iAI'/2 matrices, with the average value of the
diagonal elements obeyin@‘j’;Dz 1/hp, i.e., enforcing the 2
rule. Thus, when summing over the open channels, the diagonal
elements yieldT ;0= K/hp, in accord with TST. Moreover,
the diagonal elements of the width matrix follow ja?
distribution.

Bifurcation of the distribution of widths upon diagonalization
makes it difficult to define an experimentally observable rate.
The average rate is preserved (trace conservation), and it is not
feasible that only one or the other of the groups corresponds to
unimolecular decomposition. Peskin et al., using a sensible
definition of the experimentally observable rate, fitted temporal
decays of initialQ-space wave packets to exponentfélahile
avoiding the regime of pronounced bifurcation.

When the rate calculated by using the above procedure

experiments in which reaction products are detected. Signalssaturates with a sufficiently large number of open channels, i.e.,

would display both rapid rise times and much slower rise times.
There would be no way to fit the data to a smo&(E).

In rare cases, structure K(E) versusk has been observed at
energies not too far above the reaction threskdfdand rates
fluctuate with small changes iB when accessing a modest

ok/dK = 0, which has been verified by numerous auttrs?

the system is manifestly at odds with TST. In fact, it has been
shown that this rate decreases with the addition of further open
channels, and no amount of ad hoc adjustment can remedy the
problem.

number of open channels. Also, a few special cases, such as The 2t rule states that the average separation between

HFCO*® and HOCI#%41 are nonstatistical due to incomplete

adjacent resonances (i.p-,}) divided by the average resonance
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width is equal to Z; see Appendix A. This indicates that for s o
each open channel the partial widths are, for the most part,

isolated. We say “for the most part” because a ratio of 2
inevitably accommodates a small degree of overlap. Anisolated”
partial width is equal to the corresponding single-channel
reaction rate time&. Thus, with the 2 rule enforced, the regime

of overlapping resonances in unimolecular decomposition is seen
to be the consequence of many channels being open.

When partial widths for the same open channel overlap,
interference occurs, for example, in an absorption or Stark-tuning
spectrum. Such interferences have been observed (using Stark——
tuning spectroscopy) and analyzed by Polik ealhere will Figure 5. A manifold of bound levelgs, which have nearest-neighbor
always be some degree of interference for a given open channelSPacings given by eq 1, is coupled va (whose energy i€,) to a
but this will be modest. Thus, the partial widths can be said to continuuMge. TheVs, matrix elements that coupig, to the manifold
be mainly isolated. Interference is also possible if a product gﬁﬁilxe\é?;%sns;n;?edgfsirjrgte\éagesef?;ctjg%glmf(f:ieerr?tggefvgrllse'r;;é\/nE
species is monitored in one of its rovibronic levels, e.g., by '

recording a yield spectrum. When two or more open channels, iy pe igentified for large bound-continuum coupling. Express-

yield the monitored state (plus a specific state of the other j,q ihis model as an effective Hamiltonian and carrying out a
fragment), these constitute separate pathways to the samepanqe of hasis reveals a form that satisfies eq 13. Restricting
products. Thus, mterjgrence effects have been reported over g, energy range to a shell near the center enEsggelds the
broad energy rangé: random matrixHe model version of eq 12, thus identifying its

‘Because TST open channels are independent and the partiahontent for the case of a single gateway state. Extension to
widths for a given open channel are mainly isolated, the total multiple gateway states is straightforward.

widths can be obtained by summing partial widths. The
resonances overlap in the sense that their average width exceedé‘.X
the average spacing. However, this differs qualitatively from fo
cases in which resonances interact strongly via a common
continuum. Thus, in modeling unimolecular decomposition,

there should be no complication with many open channels. In
the regime of strongly overlapping resonances, fluctuations
should be diminished markedly relative to the threshold region
andk(E) should approaclKI™O= K/hp. If this goes awry in

the regime of strongly overlapping resonances, the model is atyarsusk. Note that this differs from thefef approach, which

fault. yields widths of resonances and their compositions in terms of

Equation 4 is exact, and eq 12, being a good approximation pagjs vectors but provides no information about dynamical
to eq 4, yields accurate resuftbut if not for unimolecular processes in the continuum.

.decompos.ition, then for what physical system? It is the In going from (a) to (d) in Figure 6jVoe| increases, with
interpretationof the Q space as the molecular space a'ndFthe' the other parameters constant. This brings about interesting
space as the product space th_at breaks down with mcreasmq:hanges_ NealE,, the resonance widths at first increase.
bound-cont!nuum °°“p"7‘9- It will be ShOWf.‘ below how strong However, as the coupling @f, to the continuum continues to
bound-continuum coupling causes certain states to acquire; - rease  there comes a point where these widths begin to

properties of_the continua. This decou_ples th_em fr(_)m the decrease. This occurs becaggés being distributed throughout
molecular region, causing the aforementioned bifurcation. the continuum over an increasingly broad energy range. At
energies well-removed frof,, resonance widths increase with
bound-continuum coupling, whereas resonance widths Bear
decrease. For a given value ¥fg , the largest widths are

Equations 12 14 with theV;, in eq 13 chosen randomly have located neaE,, subject to the randomness of thig,
been used to construct abstract mathematical models of uni- Increasing the coupling af, to the continuum (with fixed
molecular decomposition. In attempting to bring such models Vi, uncouples¢, from the ¢s and dissolves it into the
into registry with TST, it has been tacitly assumed that the TS continuum. Thus, increasing coupling to the continuum causes
levels are dissolved into th€ and/or P spaces, thereby  one width (i.e., that op,) to increase while the others decrease.
providing bound-continuum coupling. This is a bifurcation of the distribution of widths.

Insight can be obtained by solving the model shown in Figure  Solutions to the model shown in Figure 5 are interpreted
5. The¢s are coupled to a continuum vig,, which acts as a  straightforwardly because the role @f is known from the
gateway between thes manifold and the continuum. It is  outset. For example, the bifurcation in Figure 6d is unambigu-
assumed that th¥,e are independent of energy. This system ous. The model shown in Figure 5 can also be converted to a
cannot serve as a model of unimolecular decompositignpn( form that highlights its relationship to eq 13. It is shown below
does not approximate an open channel, because it has fixedhat eqs 12 and 13 applied to the case of a single open channel
energy; (i) there is no way to consistently define channel represent the model shown in Figure 5.
thresholds, because widths are distributed smoothly in energy; He Matrix Representation of the Model Problem. The
and (i) the widths (locally averaged to remove random model shown in Figure 5 has the simpi&f matrix representa-
fluctuations) depend on their distance frdn tion shown in Figure 7. The energies of eandg, levels lie

We now examine exact solutions of this model for a range on the diagonal, and the off-diagonal matrix elemeviisare
of coupling strengths. A bifurcation of the distribution of widths drawn randomly from a Gaussian normal distribution with zero

-

Exact Solution. The model in Figure 5 is solved exactly by
tending the method of integration residuals introduced by Fano
r analyses of interference line shapes (Appendi®*B)hen
coupling ofg,, to the continuum is weak relative to coupling of
¢n to the ¢s, the resonances are sharp, as shown in Figure 6a.
Because the solution is exact, the eigenfunctig(i) reveal
how ¢n and¢s are distributed in energy. For example, a single

' resonance can be resolved into howdtsand ¢, constituents

are distributed. This is shown in Figure 6 in plots @f(E)|pnP

IV. What Does the Random Matrix Optical Model
Represent?
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Figure 6. Exact solutions of the model problem presented in Figure
5 with 5000 bound states and = 1. The Vs, were drawn from a
Gaussian normal distribution having zero mean and dispersion of 2.
Panels (a-d) are forV,e values of 0.2, 2.5, 10, and 20, respectively.
The upper plots for each of the panels are the sums of#{&)| <P

for a modest energy interval centered Bf the lower plots are
|@p(E)|¢nlP. With the latter, low resolution shows the overall envelope,
while at high resolution|@ (E)|¢nP varies markedly near each of the

resonances. Note the different horizontal scales for the upper and lower

plots. In (a),¢n and thegs are mixed strongly within the energy range
of their interaction, which is given by:ZVs1?(p, and the decay width
of ¢, is shared among the mixed levels. In (c) and ¢gl)is uncoupled

from thegs, and the resonance positions in the upper plots are essentially

Wittig and Bezel

s On s
E’S \ V’sn
-~ Vg E'peifil 2
E’s

Figure 7. The ¢s energies ar&,. The complex energy a, is E, —
ihl, /2. The matrix element¥, couple¢, and ¢s.

The goal is to transform thid' — iAI"/2 matrix into the form
of eq 13. To achieve this, the matrix is subjected to a change
of basis that mixesp, and the¢s, with the —iAI /2 term
ignored. Namely, thél' part is diagonalized. In leaving aside
the decay ofp, to the continuume, is treated as a member of
the quantum-chaotic bound states. The similarity transformation
that diagonalizes!' is then applied tdd' — iRI"/2. As a result,
terms appear in both the diagonal and off-diagonal positions of
the new width matrixfl.

It is now shown thahl satisfies eqs 12 and 13. The matrix
elements ofl" are given by

Al = ) §AL (Sfl) '
j ;q q aj

= Zakhn(q%q
.q

(16)
17

where S is the matrix that diagonalizebl’, and S = &'
(transpose) has been used. Becauséiffienatrix has but the
single nonzero element given by eq 15, eq 17 becomes

hrij = Z Skhyéknanqaq
d

=hyS:Sn

Thus, equating the expressions fdrj given by egs 13 and
19, the elements of theth column ofS (i.e., theS, in eq 19)

are equal to (@/hy)Y2times theVj, in eq 13. Referring to Figure

7, in diagonalizingH', ¢,—¢s coupling yields states whose
expansion coefficients are random. Thus, the chaotic nature of
the intramolecular dynamics has resulted in coefficitthat
have the same statistical properties as\hen eq 13. Thus,

the equivalence of the model shown in Figure 5 and the random
matrix He™ model is proven.

To illustrate with an example the statistical properties of the
Sn, @ modest energy interval near the center enéigyhave
been analyzed, as indicated in Figure 8a. Figure 8b shows that
the randomness of thé,, matrix elements, whose distribution

(18)

(19)

those of theps (¢ cannot be seen in the upper plots); these resonance IS Gaussian, has been transferred to$jewhich are seen to

widths decrease with increasinge.

mean. Primes are used to label Hf¥ matrix before the change

of basis. The only imaginary term isihl, /2
—ihl /2 = —ihyl2 6,0, (15)

wherey is the decay rate of the, level, anddi, anddy; are
Kroneckerd's.

also exhibit a Gaussian distribution.

Interpretation. The model depicted in Figure 5 of a single
gateway statey, that couples thes levels to a continuum has
been cast in a form that invites comparisons to eqs 12 and 13
in the regime of overlapping resonances. Increasing the value
of y in eq 19 causes a bifurcation of the distribution of widths
and brings about strong resonance overlap that is evident in
the diagonal matrix elements 6f° — iAI'/2.
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Figure 9. The¢s are zero-order bound states, apdis a continuum.

The lowest TS level is indicated as the threshold for the barrierless
pathway shown. The energy available for reaction coordinate transla-
tional motion in the TS region is labelds

P(s,)

decomposition, regardless of the degree of coupling to the
continua. To have independent open channels that are consistent
with TST, a model is needed that has one-way fluxes to the
continua via the corresponding TS levels.

V. A Simple Model

P PR R W The flaws of the random matriki® model are lethal, and

990 L g0 there is no remedy. Thus, an alternate model is introduced.
S i Figure 9 indicates one possibility. The salient features are

Figure 8. (a) Stick spectrum for a singl#, coupled to 200@s. The outlined here; a complete description will be published later.

Vsn matrix elements were drawn from a Gaussian normal distribution This model accounts for fluctuation phenomena, and it has no
with zero mean and dispersiea 10, analogous to Figure 6c¢. (k) 2 or bifurcation problems.

distribution: arrows indicate the energy region chosen for analysis. .
The solid line indicates a Gaussian distribution. Results are averaged Recall that, for each open channel, the ratio of the average

over 10 matrices. separation between resonances to the average resonance width
is 2. This can also be stated in terms of the decay rates of the

Additional gateway stateg, can be introduced that are TS region to the bound space and to the continuum, i.e., the

coupled to their respective continuae as well as to the  ratio of the formerK-) to the latter k-) is equal to 2. As E

manifold of ¢s levels. For example, additional termshI", /2 increasesk-. increases, and consequently, the coupling of the

and V., could be added to the matrix shown in Figure 7. TS region to the bound region must increase in order to maintain

Diagonalization of the real part again yields a nondiagonal width the average resonance decay rate equalttp. 1/

matrix. This matrix is the superposition of the partial width The Wigner distribution provides bound-state energies for a

T
-0.10 -0.05

matrices associated with the different valuesnofThe random- system whose classical dynamics are chaotic. These can be taken
ness of theVy,, matrix elements is transferred to the partial as the centers of the resonances. Because of the nonoverlapping
width matrices. nature of the resonances belonging to a single open channel

The partial width matrices obey eq 13. In this sense, they and the independence of the open channels, couplings to the
are independent of one another. However, the gateway stateschannel continua do not shift significantly the centers of the
together with their respective continua, are automatically coupled resonances. The average single-channel resonance decay rate
to one another via thes levels. This is true regardless of the IMOs equal to Ip, and the statistical fluctuations of the single-
details of the model. It is a consequence of the fact that coupling channel decay rates from one resonance to the next follow a
of the ¢s to the continua is via bound states. The partial width yx-squared distribution with one degree of freedom.
matrices are not independent in the sense of TST models of Because the relevant physics is inputted directly, there is no
unimolecular decomposition, in which the continua are not computation. For a single open channel, the resonance center
coupled to one another. energies follow a Wigner distribution, and the partial widths

The above example explains the “trapping effect” discussed fluctuate about the value 1#2. Multiple open channels are
previously?5-35in which the magnitudes of the imaginary parts introduced by adding partial widths for each resonance, starting
of the eigenvalues of thBl — K trapped states first saturate at each channel threshold, with the partial widths for each open
and then decrease with increasing coupling to the continuum. channel obtained independently. The result is that (i) the rate
In these studies, tHe — K levels have sometimes been assigned increases, on average, in steps ofipl/(ii) the degree of
to RRKM-type behavior, e.g., for a restricted range of bound- resonance overlap increases withand (iii) fluctuations irk(E)
continuum coupling strengths. However, the results presenteddecrease witlE according to the averaging that results from
above show that such a model does not represent unimoleculathe successive openings of channels. The introduction of channel
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thresholds differs from the random matti™ model, which is e
an energy-shell model that, by definition, has no channel
thresholds.

The statistical theory of unimolecular decomposition is based
on the assumption that each open channel is independent and
is accessed via a TS level. Though the TS levels are not explicit
in this model, the 2 rule imposes constraints. For example, as
E increases, the rate with which the TS region evolves to its
continuum k-.) increases. The corresponding increase.n
requires that the TS lies at smallerin simple terms, the TS
region, by definition, lies between regions of chaotic and regular Figure 10. Multidimensional classical motion projected onto the

dynamics. The more vigorously the system moves toward the Px plane. The shaded area 'and the curves extending into the' product
| . th ¢ v it tb led to th region represent the accessible phase space at eBefine TS region
regular region, the more strongly it must bé coupled 1o the separates the molecular and product regions. Trajectories move from

chaotic region in this balancing act. This stronger coupling can |eft to right in the upper half-plane and from right to left in the lower
only occur closer to the molecular region. Such “tightening of half-plane. Dissociation occurs for positipe

the TS” is an established phenomerériThis effect holds for

each open channel. Because the channels are independent, $6e black area in the figure. From the TS, the system is assumed
are their TS properties. For example, when more than one to proceed to products.

channel is open, each of the TS levels for the different channels The TS introduced above is for a single open channel.
lies at a different location along the reaction coordinate. The Consider now the channel having the lowest threshold. The

change in TS location witk is most pronounced for barrierless ~ subsystem consisting of tize- 1 degrees of freedom orthogonal

molecule products

TS region

reactions just above the channel thresholds. to the reaction coordinate at the TS, wheie the total number
of degrees of freedom, is in its lowest energy level. At the TS,
VI. Summary all of the available energy is in one-dimensional translational

motion along the reaction coordinate.

Effective Hamiltonian models have been used previously to  The phase volumes are calculated for a small energy interval,
model unimolecular decomposition with emphasis on quantum AE. The phase volumes of the TS (i.AV+s) and of the chaotic
fluctuation phenomena and bifurcations of the distribution of region (i.e.,AV) are given, respectively, by
widths. Specifically, with the Hilbert space partitioned irgo
and P subspacesH® is approximated a$i® — ihI'/2. This AV-e = hz_lf dxAp (A1)
random matrixHe model fails in the regime of overlapping TS TS X
resonances, where most unimolecular reactions occur.

In this paper, it has been shown that dividing the Hilbert space

into two subspaces, though mathematically exact, stymiesyhere integration is carried out over the TS region arisithe
satisfying the requirements of a statistical theory of unimolecular density of states. The phase volume of a sirgtémensional

decomposition. Furthermore, it has been shown that all imple- state ishz. Thus, the single-channel microcanonical rate coef-
mentations to date dfi* = H° — iAT/2 are models in which  ficient ki is given by

gateway states couple a manifold of bound levels to continua.

Bound-continuum coupling via gateways states is incompatible ) AVig 1

with independent open channels. Therefore, such models cannot K = AV 7o (A3)
represent unimolecular decomposition in the regime of overlap- s

ping resonances. A simple model has been pointed out thatwhereAVTs/AV is the probability that the system is in the TS
accounts for quantum fluctuations without the aforementioned region andrrs is the transit time through the TS region. Putting

AV = WpAE (A2)

problems. egs Al and A2 into eq A3 yields
Acknowledgment. This research was supported by the Ap
ional Sci dat R N (A%)
National Science Foundation (CHE-0203978). hp 77/ 75 AE
Appendix A. The 27 Rule Using the fact tha\E = vAp,, wherev = dx/dt, in the TS
A useful tool for dealing with the regime of overlapping '€dion vields
resonances in unimolecular decomposition is ther@e. To 11 dx
show how this works, a simple calculation is used to obtain the kb = hozoJs (A5)
rate per independent open channel for a microcanonical system P Trs v
in the statistical limit. Figure 10 shows a two-dimensional 1 1
section of the multidimensional phase space, wheig the :h_P;s TS dt (A6)

reaction coordinate ang is its conjugate momentum. Dynami-
cal processes in the molecular region are assumed to be chaoticgacquse the integral is, by definition, equal tes, eq A6
as indicated by the irregular trajectory, while in the product pocomes

region, they are regular. It is assumed that the chaotic dynamics

are fast in comparison to dissociation and that they are ergodic, KD — 1
i.e., the phase space is filled uniformly by trajectories. It is also - h_p
assumed that the system exits the chaotic region via a region

of the phase space that separates the chaotic and regular regionghus, the rate coefficient for the lowest open channel is equal
along the reaction coordinate, i.e., the TS region indicated by to 1/hp, independent oE.

(A7)



Effective Hamiltonian Models J. Phys. Chem. B, Vol. 110, No. 40, 20089859

The system consisting af— 1 degrees of freedom orthogonal where it is understood thd& = Eg. Inverting eq B4 requires
to the reaction coordinate has excited TS levels that constitutemore care becaud€ varies continuously. Thougg' = E is
independent open channels. Each follows the prescription givencertain to occur, eq B4 can be inverted as long a&'(is not
by egs AL-A7 and contributes bp to the overall rate. Each  allowed to be equal tocE when E — E' appears in the
has a TS that is accessed without bias from the chaotic region.denominator, and (ii) a term is added that is present onl at
This is why the channels are said to be independent. Thus, the= E and satisfiesk — E’) Cg = 0. This “residual” term is
expression for the microcanonical rate coefficient is given by proportional tad(E — E'), and it can be a function &. Because
k(E) = K/hp, whereK is the number of independent open we are dealing with the full Hamiltonian rather than an effective
channels. Hamiltonian, this integration residualE) must be real. Thus,

The single-channel rate coefficiek®) = 1/hp corresponds the inversion of eq B4 can be written
to the average single-channel resonance decayTFat@vhere
n denotes a generic open channel. The individual single-channel _ 1 .
decay rated correspond to partial width&T}, where the Ce = VerCa E-F E—_g T ABOE-E)
subscript denotes specific resonances. This relationship can be
used because, for a given independent open channel, the widthd he first term in brackets is taken as the principal part upon
are mainly nonoverlapping, as seen from the expression integration, and it is assumed thétn in eq B4 is constanigr)

for all E'. Thus, the equations for the coefficients become

(B7)

average separation between resonancesp *

average resonance width per open channgjr (A8) C,=C\Ven ECE _1 E, (B8)
=2 (A9)
wherelI™ (= 1/hp has been used. This constitutes ther@le. Ce=CVqlm/—= E_ 1 = + Z(E)o(E — E')] (B9)

It shows that the resonances for a single independent open
channel have modest overlap.

_ _ C(E-E)= Zc Vi + Ve J dE'Ce.  (B10)
Appendix B. Exact Solution of the Model Problem

Referring to the model problem shown in Figure 5, the
eigenfunctionsy(E) are expanded in the basis of boungh (
and¢s) and continuumde-) functions

Together with the normalization @f(E), eqs B8-B10 describe
fully the system shown in Figure 5. Substituting eqs B8 and
B9 into eq B10 yields an expression fgE)
WEZC@K+ZC¢§+IdEQW9 (B1) Vg N|2
Z2E)|Ve > =E — E,— — [ dE
(E)|Ven ZE 3 S -

(Bll)
The coefficients ar€, = [¢n|y(E)L) Cg = [¢s|y(E)[] and Ce-
= [¢e|y(E)J The e are normalized according @e |pe =
O(E — E"). To obtain equations for the coefficients, the where it is understood that the principal part is taken upon
Schrainger equation,Ho + V)y(E) = Ey/(E), is applied to eq integration. Thus, for a given set of parametefs, Es, Ven,

B1, yielding Vs n), Z(E) is obtained. Becausdée is assumed to be independent

of E, the principal part integral in eq B11 vanishes, leaving

EY(E) = C(E, + Vg, + 3 C(Eg + V)gg + 2
E [Vis]
3
J dEC'e.(E" + V)ge: (B2) AE)Ved =B~ By = 5 ———
S5

(B12)

whereE,, Es, andE" are eigenvalues dflo. Projecting eq B2

onto [gs|, [pe|, andldy| yields, respectively Applying the normalization conditiof(E)|y(E) 3= 6(E — E)
yields C;** the coefficientsCs and Cg are then obtained by

(E- ES«)C% - Vﬁncn (B3) using eqgs B8 and B9. With the phase set equal to Zefas
given by
(E - E')CE' = VE’nCn (84)
1
C,=r— B13
(E—E)C,= ) VpCs + J dE"V,eCe  (B5) " Vel 21 2 (B13)
B
) - : . .
whereVs n = [@s|VIgnl) Ven = pe|Vignl)andVie: = [¢n|V|ge L] ;\ggﬁjr: both® andz* arise as integration residuafand eq B8
Referring to Figure 5V has no nonzero off-diagonal matrix
elements among thgy bound states or among tie: continuum vV
states. Equation B3 can be inverted to yi€ldas long as = C = sn 1 (B14)
Es. Because th&s values are discrete, this poses no difficulty; S Vgl E—E JT
E = E4 can always be chosen when evaluatin@). Thus, eq
B3 becomes To summarize, for a given value & z(E) is evaluated by
1 using eq B12. The expansion coefficients are then obtained by
Cs =ﬁv§ncn (B6) using egs B13, B14, and B9. The solution is exact. Because
S they(E) belong to a continuum, they are not square integrable.
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Instead,(E)|y(E)O= 6(E — E). It is easy to take a large
enough number ofy(E) so that|(s|y (E)(P versuskE appears
continuous.
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