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Effective Hamiltonian Models and Unimolecular Decomposition†

Curt Wittig* and Ilya Bezel ‡

Department of Chemistry, UniVersity of Southern California, Los Angeles, California 90089

ReceiVed: March 24, 2006; In Final Form: May 24, 2006

Partitioning Hilbert space into two subspaces by using orthogonal projection operators yields compact forms
for effective Hamiltonians for each of the subspaces. When one (theQ space) contains molecular bound
states and the other (theP space) contains dissociative continua, a simple form for the non-HermitianQ-space
effective Hamiltonian,Heff, can be obtained, subject to reasonable approximations. Namely,Heff ) H0 -
ipΓ/2, whereH0 is Hermitian, and the width operatorpΓ accounts for couplings of theQ-space levels to the
P-space continua. TheP/Q partitioning procedure has been applied in many areas of atomic, molecular, and
nuclear physics with widespread success. Inputting into this formalism ideas from random matrix theory in
order to model independent open channels yields the random matrixHeff model. Despite numerous efforts,
this model has failed to model satisfactorily the statistical transition-state theory of unimolecular decomposition
(hereafter referred to as TST) in the regime of overlapping resonances, where nearly all such reactions occur.
All statistical models of unimolecular decomposition are premised on rapid intramolecular vibrational
redistribution (IVR) for a given set of good quantum numbers. The phase space thus accessed results in a
threshold reaction rate of 1/hF, and forK independent open channels, the rate isK/hF. This reaction rate
corresponds to a resonance width ofK/2πF, and whenK increases, the resonances (which areF-1 apart)
overlap. In this regime, the random matrixHeff model fails because it does not introduce independent open
channels. To illustrate the source of the problem, an analysis is carried out of a simple model that is obviously
and manifestly inconsistent with TST. This model is solved exactly, and it is then put in the form of the
random matrixHeff model, illustrating the one-to-one correspondence. This reveals the deficiencies of the
latter. In manipulating this model into the formH0 - ipΓ/2, it becomes clear that the independent open
channels in the random matrixHeff model are inconsistent with TST. Rather, this model is one of gateway
states (i.e., bound states that are coupled to their respective continua as well as to a manifold of zero-order
bound states, none of which are coupled directly to the continua). Despite the fact that the effective Hamiltonian
method is, by itself, beyond reproach, the random matrixHeff model is flawed as a model of unimolecular
decomposition in several respects, most notably, bifurcations of the distributions of resonance widths in the
regime of overlapping resonances.

I. Introduction and Background

Some time ago,1-3 Miller and Moore introduced a model for
unimolecular decomposition that deals with quantum mechanical
phenomena beyond the purview of microcanonical transition-
state theories such as RRKM (Rice, Ramsperger, Kassel, and
Marcus), PST (phase space theory), and SACM (statistical
adiabatic channel model).4,5 It focuses on resonances that derive
from couplings between bound rovibronic levels and dissociative
continua of independent open reactive channels, resulting in
quasibound levels. In an earlier, influential paper by Mies and
Krauss, unimolecular decomposition had been analyzed in terms
of resonance decay in the regime where the resonances overlap,
i.e., their widths exceed their average separation.6

Before proceeding, it is useful to clarify what is meant by
independent open channels and associated dissociative continua.
In the statistical theory of unimolecular reactions, independent
open channels are accessed via corresponding transition-state
(TS) levels, as indicated in Figure 1. These TS levels are the
thresholds for the open channels. For reactions in which

dissociation occurs (as opposed to isomerization), each inde-
pendent open channel leads to fragments that lie in the channel’s
dissociation continuum. An independent open channel is not,
in general, equivalent to a single resolved product state, i.e., a
set of quantum numbers for the fragments. It originates at its
TS region and from thereeVolVes to a set of product quantum
states. Thus, accessing a TS level is equivalent to accessing
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Figure 1. Energies of the transition state (TS) levels (i.e., the channel
thresholds) are denotedEi. For a given TS level, the translational energy
in the TS region is approximately constant atE - Ei. The independent
open channels accessed via their TSs extend into their continua.
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the corresponding open channel. The TS region lies along the
reaction coordinate at a location that separates the parent and
product spaces.

In the model of Miller and Moore, statistical properties of
wave functions, resonance widths, spectral intensities, and so
forth are justified on the basis of physical arguments, and ideas
from random matrix theory7,8 are enlisted. The statistical
analyses are based on seminal work of Porter and Thomas9,10

that reconciled experimental data in the field of nuclear physics.
Specifically, fluctuations (i.e., erratic changes from one reso-
nance to the next) had been noted for widths associated with
the following: (i) low-energy neutron capture by heavy target
nuclei, (ii) fission, and (iii) radiation. Previous work by Hughes
and Harvey had shown, through a compilation of most of the
available data, that the widths for (i) could be fitted to a
ø-squared distribution having between one and two degrees of
freedom. In this work, the term “degrees of freedom” referred
to the mathematical form of theø-squared distribution.11 Later,
Miller and Moore showed that these degrees of freedom are
equivalent to independent open channels. Though the original
fit was empirical, analyses by Porter and Thomas9 provided a
theoretical explanation of the experimental results, as well as a
basis for making predictions. Extension of their model to
unimolecular reactions is straightforward.

In the 1980s, laser and nozzle expansion techniques enabled
experimental studies of unimolecular decomposition to be
carried out at the state-to-state level. The first system to be
examined thoroughly was NCNOf CN + NO, which adheres
to standard statistical models.12 On the other hand, for D2CO
f D2 + CO, it was observed that decay widths of individual
resonances, as well as coupling matrix elements between S0 and
S1, fluctuate over a modest energy interval.13-16 This was
attributed to the nature of the S0 eigenstates and their corre-
sponding resonances. Namely, chaotic vibrational dynamics give
rise to eigenstates whose projections on the reaction coordinate
differ significantly from one level to the next. Expansion
coefficients of the S0 eigenstates in a separable Hamiltonian
basis are random, subject to normalization.

Virtues of the model include the fact that it is simple and
not system-specific. Unlike other models, it deals with quantum
fluctuation phenomena that have been observed in highly
resolved experimental studies. This work has advanced our
understanding of unimolecular reactions.

For bound Hamiltonian systems in the chaotic regime, Wigner
derived a simple formula for the distribution of nearest-neighbor
spacing for levels having the same good quantum numbers7

wheres is the normalized spacing between adjacent levels (i.e.,
the spacing divided by the average spacing) andPW(s) is the
probability density. Equation 1 is not system-specific. It can be
applied to disparate phenomena, ranging from the quasi-bound
levels of excited nuclei (prepared by the capture of low-energy
neutrons by heavy nuclei) to the vibrational levels of polyatomic
molecules.

Random matrix theory, also introduced by Wigner,17-19

provides a rigorous derivation of the level statistics for the
Gaussian orthogonal ensemble (GOE) of asymptotically infinite,
real, symmetric, random matrices and yields a result that is close
to eq 1, albeit not in closed form.7 In addition, it provides
statistical measures for higher-order correlations, the most
common being the∆3 statistic of Dyson and Mehta.20,21Though
the derivation of the GOE result is more formal than the original

derivation given by Wigner for eq 1, there is little difference in
content. Equation 1 can be readily subsumed into models of
unimolecular processes in which the dynamics are assumed to
be chaotic in the region of bound states.

A Hamiltonian system whose energy-level spacing distribu-
tion is in agreement with eq 1 can be said to be quantum chaotic.
Classical chaos can be defined by exponential divergence from
one another of nearby trajectories in phase space. As no such
definition is available for the quantum counterpart, we take eq
1 as an ad hoc definition. In this regime, adding reasonable
off-diagonal matrix elements does not change the nature of the
dynamics. For example, suppose a diagonal matrix obeys eq 1.
Adding reasonable off-diagonal matrix elements changes the
eigenvalues, but the distribution of eigenvalues still obeys eq
1, as illustrated in Figure 2. Thus, the chaotic nature of the
dynamics is robust. Note that an ergodic system (one that fills
the phase space) is not necessarily chaotic. As used here, chaos
is a trait of the system’s dynamics. It is assumed that the chaotic
systems under consideration are ergodic.

In view of the above, it can be said that the regime of chaotic
dynamics within the bound space is understood at the level
required for the problem under consideration. On the other hand,
the introduction of ideas from random matrix theory to model

PW(s) ) π
2

s exp(- π
4

s2) (1)

Figure 2. Nearest-neighbor spacing distributions, obtained by matrix
diagonalization, that demonstrate the robustness of eq 1. The matrices
are of dimension 2000, and the average nearest-neighbor spacing is 1.
In (a-c), the diagonal elements have been obtained by using (a) a
Wigner distribution (i.e.,PW(s), eq 1); (b) equal spacing; and (c) a
Poisson distribution (i.e.,PP(s) ) e-s), andHij that have been chosen
randomly from a Gaussian normal distribution withσ2 ) 1 and a mean
of zero. In (d-f), the diagonal elements are the same as in (a-c), but
theHij have been chosen randomly from a Gaussian normal distribution
with σ2 ) 10. To avoid effects from the matrix boundaries, only states
with -500 < E < 500 have been used in the histograms. All results
are averaged over 10 matrices. The solid lines are Wigner distributions
PW(s).
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bound-continuum coupling with a number of independent open
channels is on less secure footing.

In the Miller-Moore model, bound-continuum coupling is
accounted for within the theoretical framework of an effective
Hamiltonian formalism introduced mainly by Feshbach,22 often
referred to as the optical model or optical potential theory. The
Hilbert space is divided into two subspaces by using orthogonal
projection operatorsQ and P, and effective Hamiltonians for
theQ andP spaces are obtained by straightforward manipulation
of the Schro¨dinger equation.22,23For unimolecular reactions, an
obvious perspective is that of molecular bound states and product
dissociative continua.

Following the convention introduced earlier in analyses of
formaldehyde data,13 the Q and P labels are assigned to the
molecular (bound) and product (continua) spaces, respectively

The |i〉 are the bound states of theQ space, and the|E′〉 are the
states of theP space. The simultaneous presence of summation
and integration symbols in eq 3 indicates that continuous
distributions of momentum states for relative translational
motion of the products, as well as discrete product internal states,
are included in theP space.

The definition of theP-space internal levels is subtle. Were
the P space just the product space, these levels would be the
quantum states of the products. However, to be consistent with
TST, theP-space internal levels must also be defined in the
region of bound-continuum coupling. For example, for a tight
transition state, the transition-state frequencies are used for the
P space together with free motion along the reaction coordinate.
Transition-state excitations consist of quantized vibrations, each
of which constitutes an independent open channel, and an
associated translational continuum for each such channel. It is
assumed that the system evolves from the transition state to
the product space and that the statistical weights used to compute
rates are those of the transition state and the molecular space.
Note that, throughout this paper, the term TST is used to denote
the statistical theory of unimolecular decomposition.

Following straightforward manipulations,22,23 the Q-space
effective Hamiltonian is obtained

It is understood thatε f 0+, i.e.,ε approaches zero as a positive
quantity. Equation 4 is exact. ThoughHeff operates only in the
Q space, all interactions involving theP space are accounted
for by the second term to the right of the equal sign. The operator
QHP passes amplitude from theQ space to theP space. The
expression 1/(E - PHP + iε), the resolvent of the Green’s
function, is equivalent to propagation in theP space. The
operatorPHQ passes amplitude back to theQ space.

Reaction channels are introduced by partitioning theP space
into independent, i.e., noninteracting, continua

where the indexn denotes the independent continua,K is the
number of such continua, and

where |nE′〉 is the ket for thenth independent continuum at
energyE′. The indexn accounts for theP-space internal levels
summed over in eq 3. Integration can be carried out in
momentum or energy space using appropriate densities of
states.24 Putting eq 5 into eq 4 yields

As in eq 5, indicesk, l, m, andn denote independent continua.
Applying conditions of orthogonality (PnPm ) δnmPn) and
noninteraction within theP space (PnHPm ) δnmPnHPn) yields

The corresponding Schro¨dinger equation

yields complex energiesE when theP-space eigenvalues are
continuous, in which caseHeff is non-Hermitian. In general, eq
9 is difficult to solve, becauseH must be known throughout
the entire bound region, as well as the region of bound-
continuum coupling, whose very definition is nontrivial, par-
ticularly for barrierless unimolecular reactions. Though the
presence ofE in the denominator of eq 8 in general complicates
the evaluation of matrix elements ofHeff, in the present case,
the fact that theP-space eigenvalues vary continuously can be
used to simplify matters, enabling eq 8 to be approximated as

whereFn(E′ ) is the continuum density of states per unit volume
of the nth channel. By assuming thatFn(E′) is independent of
E′ (which is appropriate for models that treat modest energy
ranges) and that the bound-continuum coupling matrix elements
are independent of energy, the matrix elements ofHeff become

The density of states in eq 10 has been subsumed into|φnE〉
and 〈φnE|, each acquiring a factor ofFn(E)1/2. Thus, whereas
|nE′〉 is normalized by the Kroneckerδ (integration over space),
|φnE〉 is normalized by the Diracδ (integration over energy). In
the above,H0 ()QHQ) operates in theQ space, the matrix
elementVin ) 〈i|V|φnE〉 ) 〈i|H|φnE〉 represents the coupling
between a bound state|i〉 and a unit energy interval of thenth
channel continuum, and the-iπ factor arises from integration
of the resolvent of the Green’s function over the continuously
varying P-space eigenvaluesE′. The approximation given by
eq 11 is valid for a large number of physical systems.23 Thus,
the matrix elements ofHeff can be expressed as

Q ) ∑
i

|i〉〈i| (2)

P ) ∑ ∫|E′〉〈E′| (3)

Heff ) QHQ + QHP
1

E - PHP + iε
PHQ (4)

P ) ∑
n)1

K

Pn (5)

Pn ) ∫ |nE′〉〈nE′| (6)

Heff )

QHQ + QH ∑
n)1

K

Pn

1

E - ∑
m)1

K

Pm H ∑
k)1

K

Pk + iε

∑
l)1

K

PlHQ (7)

Heff ) QHQ + ∑
n)1

K

QHPn

1

E - PnHPn + iε
PnHQ (8)

HeffQ|ψ〉 ) EQ|ψ〉 (9)

Heff ) QHQ +

∑
n)1

K ∫ dE′Fn(E′)(QH|nE′〉
1

E - E′ + iε
〈nE′| HQ) (10)

〈i|Heff|j〉 ) 〈i|H0|j〉 - iπ∑
n)1

K

〈i|V|φnE〉〈φnE|V|j〉 (11)

Heff
ij ) H0

ij - ipΓij /2 (12)

19852 J. Phys. Chem. B, Vol. 110, No. 40, 2006 Wittig and Bezel



where

Note: Vin can be taken to be real without loss of generality, the
matrix Vin is not square, and each open continuum channel
introduces off-diagonal coupling among the quasi-bound states.

ThepΓn in eq 14 are partial width matrices. The term partial
width is used often in atomic and nuclear physics, less so in
physical chemistry. For example, it is common for a collision
that involves many orbital angular momenta to be assigned a
partial cross section for each value of orbital angular momen-
tum.25 For an isolated resonance, the total width is the sum of
the partial widths for the independent open channels, just as
the total rate is the sum of the individual rates. In the convention
used here,Γ has units of s-1; the corresponding widths are
obtained by multiplyingΓ by p.

The formaldehyde data that served as an impetus for the
theoretical model were obtained at energies near the barrier to
D2 + CO.2,13 Stark tuning yielded high-resolution spectra in
which hundreds of resonances were observed. Many nonover-
lapping resonances were recorded, and it was seen that the rates
fluctuate markedly, e.g., by an order of magnitude over a 0.2
cm-1 interval. In this regime, the degree of resonance overlap
increases with energy from mainly nonoverlapping to overlap-
ping. As mentioned earlier, the fluctuations of rates have been
attributed to chaotic dynamics of the bound region. Interference
line shapes were analyzed and fitted with the model.13

The model emphasizes the connection between chaotic
dynamics on S0 and signatures provided by statistical fluctua-
tions in observables in the threshold region. It was stressed that
the statistical arguments are valid as long as individual
resonances can be observed. This limitsK in eqs 13 and 14
such that the off-diagonal matrix elements are on average smaller
than the mean separation between the centers of the resonances.

II. Extension to the Regime of Overlapping Resonances

A number of authors have used eqs 12-14 in theoretical
studies of unimolecular reactions in the regime of overlapping
resonances.26-37 The numerical values put into the equations
have been chosen ad hoc. This does not pose a conceptual
difficulty for H0. Namely, the regime of quantum-chaotic
dynamics for bound systems is understood reasonably well, and
eq 1 can be used to obtain a representative set of energy levels.
It has been common practice in applying eqs 12-14 to assume
that H0 is diagonal and in accord with eq 1. As mentioned
earlier, bound-continuum coupling is subtler. Nonetheless,
because eq 4 is rigorous, it has been assumed that the theoretical
studies are on solid ground. Nuances concerning the energy
dependence of eq 4 have been discussed, but the basic strategy
has not been questioned.

When using eqs 12-14, the pΓ matrix is obtained by
inputting matrix elements ofV, indicated in eq 13, that are taken
to be either random over a fixed energy interval31,32 or drawn
from a Gaussian normal distribution with zero mean, in accord
with the Porter-Thomas model. TheVin can be taken as real
with no loss of generality.

It is significant that the matrix elements ofpΓn are inter-
related. For a given open channel (i.e., a given value ofn in eq
13), the differentpΓn

ij consist of binary products (VinVjn) of N

randomly generated matrix elementsVin, where N is the
dimension of theHeff matrix. Referring to eqs 13 and 14, for a
given value ofn, the matrix elementpΓn

ij is equal to 2πVinVjn,
where the indicesi andj each span the range 1- N. For theith
row of pΓn

ij, the termVin is constant and there areN values of
the Vjn. Likewise for the (i + 1)th row, and so on. It follows
that all rows are the same to within a multiplicative factor. Thus,
the rank of each of thepΓn matrices is one, and eachpΓn has
but a single nonzero eigenvalue.

Independent open channels have been introduced by generat-
ing separate width matricespΓn for each open channeln and
summing thepΓn, as indicated in eq 14. This is an energy-shell
model: open channels are added to theHeff matrix without
introducing channel thresholds within the energy range of the
matrix. (The use of an energy shell is limiting because it
suppresses thek(E) dependence that is a signature effect of
unimolecular decomposition. This deficiency is, however, hardly
the most egregious, as discussed below.) It has been assumed
that the addition of width matrices whose contents are obtained
independently of one another is equivalent to the inclusion of
the independent open channels of TST models of unimolecular
decomposition. It will be shown that this assumption is incorrect.
The above model has been called the random matrix optical
model. We refer to it also as the random matrixHeff model.

When applying eqs 12-14 to unimolecular decomposition,
it has been found that the regime of strongly overlapping
resonances is characterized by a bifurcation of the distribution
of widths into two groups, one of large widths and the other of
small widths.26-35 In this regime, forK open channels, the fact
that thepΓ matrix is of rankK results inK large widths andN
- K small widths. With increasing bound-continuum coupling,
the small widths get smaller and the large widths get larger.26-35

As the system goes from nonoverlapping to strongly overlapping
resonances, the rates (defined in a way that simulates time
domain experiments) first saturate and then decrease as the
bound-continuum coupling is increased further.36

The above features have one thing in common: the distribu-
tions of widths thus obtained,P(Γ), do not behave sensibly as
the bound-continuum coupling is increased. For example, they
differ significantly fromø-squared distributions forK degrees
of freedom,øK

2. The number of degrees of freedom of theøK
2

distribution is assumed to be equal to the number of independent
open channels. In the regime where bifurcation is pronounced,
the degree of overlap of the resonances is large. Nonetheless,
the problem emerges as soon as the resonances begin to overlap.

Figure 3 gives an example of the regime of overlapping
resonances, in whichP(Γ) differs more and more from theøK

2

distribution asK increases. Though the degree of overlap in
Figure 3d is insufficient to result in a bifurcation for the given
set of parameters, the deviation from aøK

2 distribution is
inconsistent with TST. A bifurcation can always be brought
about by increasingK (and concomitantlyN, with N . K) or
by increasing the bound-continuum coupling per channel, as
shown in Figure 4. Though the latter violates the 2π rule
(Appendix A) it has been used by numerous authors.26-37

The theoretical results obtained by using eq 12 are inconsis-
tent with what is known about unimolecular decomposition.
There exist numerous data on the unimolecular decomposition
of polyatomic molecules. These indicate that distributions of
rate coefficients do not bifurcate in the regime of strongly
overlapping resonances, where nearly all such reactions occur.
The rate coefficientsk(E) increase monotonically withE. If
anything, the variation is boring. A bifurcation of the kind
reported in the theoretical studies would be seen in time-resolved

pΓij ) 2π∑
n)1

K

VinVjn (13)

) ∑
n)1

K

pΓn
ij (14)
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experiments in which reaction products are detected. Signals
would display both rapid rise times and much slower rise times.
There would be no way to fit the data to a smoothk(E).

In rare cases, structure ink(E) versusE has been observed at
energies not too far above the reaction threshold,38,39and rates
fluctuate with small changes inE when accessing a modest
number of open channels. Also, a few special cases, such as
HFCO39 and HOCl,40,41 are nonstatistical due to incomplete

intramolecular vibrational redistribution, and subtleties have
been uncovered in other systems. However, as a general
statement, it is safe to say that there are no bifurcations. Thus,
applying eqs 12-14 to unimolecular decomposition will not
yield correct results.

III. Source of the Problem

Equations 12-14 should not be used in TST models of
unimolecular decomposition. Equation 12, withH0 diagonal,
represents a system of zero-order resonances (i.e., the diagonal
matrix elements) that interact with one another via the continua
as per the off-diagonal matrix elements of-ipΓ/2. This
mathematical structure stands in the way of satisfying the
requirement that the system evolves to products via TS levels
that are accessed independently. Open channels modeled as
-ipΓn/2 matrices, though satisfying many statistical criteria, are
inconsistent with TST.

In the regime of nonoverlapping resonances, matrix repre-
sentations ofHeff have correct physics inputted on the diagonal,
and the off-diagonal matrix elements are too small to produce
significant effects. Thus, to a good degree of accuracy, a system
initially in the Q space decays irreversibly to theP space, in
accord with TST. For example, see Figure 3a.

In the regime of strongly overlapping resonances, the average
magnitude of the off-diagonal matrix elements is well in excess
of the average energy separation between the centers of the
resonances. In this case, the off-diagonal matrix elements of
pΓ are responsible for results that contradict experiment. Strong
couplings that occur via the continua are appropriate for systems
such as adiabatic PESs coupled by strong nonadiabatic interac-
tions. However, such couplings have no place in models of
unimolecular decay. Here, the TS levels for the independent
open channels, once reached, evolve to products. There is some
reflected flux, making the transmission coefficient through the
TS region less than unity, but nothing justifies the strong
couplings between zero-order resonances, via the continua, that
appear in theHeff matrix.

In TST, each open channel contributes 1/hF to the rate, where
F is the density of participating states. The rate forK open
channels is given byK/hF. In the random matrixHeff model,
independent continua (indicesn in eqs 13 and 14) are introduced
by summing-ipΓn/2 matrices, with the average value of the
diagonal elements obeying〈Γjj

n〉 ) 1/hF, i.e., enforcing the 2π
rule. Thus, when summing over the open channels, the diagonal
elements yield〈Γjj〉 ) K/hF, in accord with TST. Moreover,
the diagonal elements of the width matrix follow aøK

2

distribution.
Bifurcation of the distribution of widths upon diagonalization

makes it difficult to define an experimentally observable rate.
The average rate is preserved (trace conservation), and it is not
feasible that only one or the other of the groups corresponds to
unimolecular decomposition. Peskin et al., using a sensible
definition of the experimentally observable rate, fitted temporal
decays of initialQ-space wave packets to exponentials,36 while
avoiding the regime of pronounced bifurcation.

When the rate calculated by using the above procedure
saturates with a sufficiently large number of open channels, i.e.,
∂k/∂K ) 0, which has been verified by numerous authors,26-37

the system is manifestly at odds with TST. In fact, it has been
shown that this rate decreases with the addition of further open
channels, and no amount of ad hoc adjustment can remedy the
problem.

The 2π rule states that the average separation between
adjacent resonances (i.e.,F-1) divided by the average resonance

Figure 3. Numerical experiments using eqs 12-14, showing distribu-
tions of the widths upon diagonalization. The matrices are of dimension
2000 with Wigner-spaced diagonals havingF ) 1. TheVin are drawn
from a Gaussian normal distribution with zero mean; they satisfy the
2π rule: 〈 Γn 〉 ) 1/hF. The P(pΓ) are the distributions of widths
obtained by diagonalizing eq 12; entries (a-d) are forK ) 1, 5, 50,
and 200, respectively. To avoid edge effects from the matrix boundaries,
only states with-500 e E e 500 have been used in the histograms.
All results have been averaged over 10 matrices. The smooth curves
are theø-squared distributionsøK

2.

Figure 4. Examples of bifurcations. The initial matrices are the same
as those used in Figure 3d, except imaginary parts have been multiplied
by 1, 3, 10, and 100 prior to diagonalization, for (a-d), respectively.
The smooth curves are theø-squared distributionsøK

2.
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width is equal to 2π; see Appendix A. This indicates that for
each open channel the partial widths are, for the most part,
isolated. We say “for the most part” because a ratio of 2π
inevitably accommodates a small degree of overlap. An isolated
partial width is equal to the corresponding single-channel
reaction rate timesp. Thus, with the 2π rule enforced, the regime
of overlapping resonances in unimolecular decomposition is seen
to be the consequence of many channels being open.

When partial widths for the same open channel overlap,
interference occurs, for example, in an absorption or Stark-tuning
spectrum. Such interferences have been observed (using Stark
tuning spectroscopy) and analyzed by Polik et al.13 There will
always be some degree of interference for a given open channel,
but this will be modest. Thus, the partial widths can be said to
be mainly isolated. Interference is also possible if a product
species is monitored in one of its rovibronic levels, e.g., by
recording a yield spectrum. When two or more open channels
yield the monitored state (plus a specific state of the other
fragment), these constitute separate pathways to the same
products. Thus, interference effects have been reported over a
broad energy range.42,43

Because TST open channels are independent and the partial
widths for a given open channel are mainly isolated, the total
widths can be obtained by summing partial widths. The
resonances overlap in the sense that their average width exceeds
the average spacing. However, this differs qualitatively from
cases in which resonances interact strongly via a common
continuum. Thus, in modeling unimolecular decomposition,
there should be no complication with many open channels. In
the regime of strongly overlapping resonances, fluctuations
should be diminished markedly relative to the threshold region,
andk(E) should approachK〈Γn〉 ) K/hF. If this goes awry in
the regime of strongly overlapping resonances, the model is at
fault.

Equation 4 is exact, and eq 12, being a good approximation
to eq 4, yields accurate resultssbut if not for unimolecular
decomposition, then for what physical system? It is the
interpretationof theQ space as the molecular space and theP
space as the product space that breaks down with increasing
bound-continuum coupling. It will be shown below how strong
bound-continuum coupling causes certain states to acquire
properties of the continua. This decouples them from the
molecular region, causing the aforementioned bifurcation.

IV. What Does the Random Matrix Optical Model
Represent?

Equations 12-14 with theVin in eq 13 chosen randomly have
been used to construct abstract mathematical models of uni-
molecular decomposition. In attempting to bring such models
into registry with TST, it has been tacitly assumed that the TS
levels are dissolved into theQ and/or P spaces, thereby
providing bound-continuum coupling.

Insight can be obtained by solving the model shown in Figure
5. Theφs are coupled to a continuum viaφn, which acts as a
gateway between theφs manifold and the continuum. It is
assumed that theVnE′ are independent of energy. This system
cannot serve as a model of unimolecular decomposition: (i) φn

does not approximate an open channel, because it has fixed
energy; (ii ) there is no way to consistently define channel
thresholds, because widths are distributed smoothly in energy;
and (iii ) the widths (locally averaged to remove random
fluctuations) depend on their distance fromEn.

We now examine exact solutions of this model for a range
of coupling strengths. A bifurcation of the distribution of widths

will be identified for large bound-continuum coupling. Express-
ing this model as an effective Hamiltonian and carrying out a
change of basis reveals a form that satisfies eq 13. Restricting
the energy range to a shell near the center energyEn yields the
random matrixHeff model version of eq 12, thus identifying its
content for the case of a single gateway state. Extension to
multiple gateway states is straightforward.

Exact Solution. The model in Figure 5 is solved exactly by
extending the method of integration residuals introduced by Fano
for analyses of interference line shapes (Appendix B).44 When
coupling ofφn to the continuum is weak relative to coupling of
φn to theφs, the resonances are sharp, as shown in Figure 6a.
Because the solution is exact, the eigenfunctionsψ(E) reveal
how φn andφs are distributed in energy. For example, a single
resonance can be resolved into how itsφs andφn constituents
are distributed. This is shown in Figure 6 in plots of|〈ψ(E)|φn〉|2
versusE. Note that this differs from theHeff approach, which
yields widths of resonances and their compositions in terms of
basis vectors but provides no information about dynamical
processes in the continuum.

In going from (a) to (d) in Figure 6,|VnE′| increases, with
the other parameters constant. This brings about interesting
changes. NearEn, the resonance widths at first increase.
However, as the coupling ofφn to the continuum continues to
increase, there comes a point where these widths begin to
decrease. This occurs becauseφn is being distributed throughout
the continuum over an increasingly broad energy range. At
energies well-removed fromEn, resonance widths increase with
bound-continuum coupling, whereas resonance widths nearEn

decrease. For a given value ofVnE′ , the largest widths are
located nearEn, subject to the randomness of theVsn.

Increasing the coupling ofφn to the continuum (with fixed
V′sn) uncouplesφn from the φs and dissolves it into the
continuum. Thus, increasing coupling to the continuum causes
one width (i.e., that ofφn) to increase while the others decrease.
This is a bifurcation of the distribution of widths.

Solutions to the model shown in Figure 5 are interpreted
straightforwardly because the role ofφn is known from the
outset. For example, the bifurcation in Figure 6d is unambigu-
ous. The model shown in Figure 5 can also be converted to a
form that highlights its relationship to eq 13. It is shown below
that eqs 12 and 13 applied to the case of a single open channel
represent the model shown in Figure 5.

Heff Matrix Representation of the Model Problem. The
model shown in Figure 5 has the simpleHeff matrix representa-
tion shown in Figure 7. The energies of theφs andφn levels lie
on the diagonal, and the off-diagonal matrix elementsV′sn are
drawn randomly from a Gaussian normal distribution with zero

Figure 5. A manifold of bound levelsφs, which have nearest-neighbor
spacings given by eq 1, is coupled viaφn (whose energy isEn) to a
continuumφE′. TheVsn matrix elements that coupleφn to the manifold
of φs levels assume different values for the differentφs levels. TheVnE′
matrix elements are assumed to be independent of energy.
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mean. Primes are used to label theHeff matrix before the change
of basis. The only imaginary term is-ipΓ′nn/2

whereγ is the decay rate of theφn level, andδin and δnj are
Kroneckerδ’s.

The goal is to transform theH′ - ipΓ′/2 matrix into the form
of eq 13. To achieve this, the matrix is subjected to a change
of basis that mixesφn and theφs, with the -ipΓ′nn/2 term
ignored. Namely, theH′ part is diagonalized. In leaving aside
the decay ofφn to the continuum,φn is treated as a member of
the quantum-chaotic bound states. The similarity transformation
that diagonalizesH′ is then applied toH′ - ipΓ′/2. As a result,
terms appear in both the diagonal and off-diagonal positions of
the new width matrix,pΓ.

It is now shown thatpΓ satisfies eqs 12 and 13. The matrix
elements ofpΓ are given by

where S is the matrix that diagonalizesH′, and S-1 ) ST

(transpose) has been used. Because thepΓ′ matrix has but the
single nonzero element given by eq 15, eq 17 becomes

Thus, equating the expressions forpΓij given by eqs 13 and
19, the elements of thenth column ofS (i.e., theSin in eq 19)
are equal to (2π/pγ)1/2 times theVin in eq 13. Referring to Figure
7, in diagonalizingH′, φn-φs coupling yields states whose
expansion coefficients are random. Thus, the chaotic nature of
the intramolecular dynamics has resulted in coefficientsSin that
have the same statistical properties as theVin in eq 13. Thus,
the equivalence of the model shown in Figure 5 and the random
matrix Heff model is proven.

To illustrate with an example the statistical properties of the
Sin, a modest energy interval near the center energyEn, have
been analyzed, as indicated in Figure 8a. Figure 8b shows that
the randomness of theV′sn matrix elements, whose distribution
is Gaussian, has been transferred to theSin, which are seen to
also exhibit a Gaussian distribution.

Interpretation. The model depicted in Figure 5 of a single
gateway stateφn that couples theφs levels to a continuum has
been cast in a form that invites comparisons to eqs 12 and 13
in the regime of overlapping resonances. Increasing the value
of γ in eq 19 causes a bifurcation of the distribution of widths
and brings about strong resonance overlap that is evident in
the diagonal matrix elements ofH0 - ipΓ/2.

Figure 6. Exact solutions of the model problem presented in Figure
5 with 5000 bound states andF ) 1. The Vsn were drawn from a
Gaussian normal distribution having zero mean and dispersion of 2.
Panels (a-d) are forVnE′ values of 0.2, 2.5, 10, and 20, respectively.
The upper plots for each of the panels are the sums of the|〈ψ(E)|φs〉|2
for a modest energy interval centered atEn; the lower plots are
|〈ψ(E)|φn〉|2. With the latter, low resolution shows the overall envelope,
while at high resolution,|〈ψ(E)|φn〉|2 varies markedly near each of the
resonances. Note the different horizontal scales for the upper and lower
plots. In (a),φn and theφs are mixed strongly within the energy range
of their interaction, which is given by 2π〈|Vsn|2〉F, and the decay width
of φn is shared among the mixed levels. In (c) and (d),φn is uncoupled
from theφs, and the resonance positions in the upper plots are essentially
those of theφs (φn cannot be seen in the upper plots); these resonance
widths decrease with increasingVnE′.

-ipΓ′ij /2 ) -ipγ/2 δinδnj (15)

Figure 7. Theφs energies areE′s. The complex energy ofφn is E′n -
ipΓ′nn/2. The matrix elementsV′sn coupleφn andφs.

pΓij ) ∑
k,q

SikpΓ′kq(S
-1)qj (16)

) ∑
k,q

SikpΓ′kqSjq (17)

pΓij ) ∑
k,q

SikpγδknδnqSjq (18)

) pγSinSjn (19)
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Additional gateway statesφm can be introduced that are
coupled to their respective continuaφmE′ as well as to the
manifold ofφs levels. For example, additional terms-ipΓ′mm/2
and V′sm could be added to the matrix shown in Figure 7.
Diagonalization of the real part again yields a nondiagonal width
matrix. This matrix is the superposition of the partial width
matrices associated with the different values ofm. The random-
ness of theV′sm matrix elements is transferred to the partial
width matrices.

The partial width matrices obey eq 13. In this sense, they
are independent of one another. However, the gateway states,
together with their respective continua, are automatically coupled
to one another via theφs levels. This is true regardless of the
details of the model. It is a consequence of the fact that coupling
of theφs to the continua is via bound states. The partial width
matrices are not independent in the sense of TST models of
unimolecular decomposition, in which the continua are not
coupled to one another.

The above example explains the “trapping effect” discussed
previously,26-35 in which the magnitudes of the imaginary parts
of the eigenvalues of theN - K trapped states first saturate
and then decrease with increasing coupling to the continuum.
In these studies, theN - K levels have sometimes been assigned
to RRKM-type behavior, e.g., for a restricted range of bound-
continuum coupling strengths. However, the results presented
above show that such a model does not represent unimolecular

decomposition, regardless of the degree of coupling to the
continua. To have independent open channels that are consistent
with TST, a model is needed that has one-way fluxes to the
continua via the corresponding TS levels.

V. A Simple Model

The flaws of the random matrixHeff model are lethal, and
there is no remedy. Thus, an alternate model is introduced.
Figure 9 indicates one possibility. The salient features are
outlined here; a complete description will be published later.
This model accounts for fluctuation phenomena, and it has no
øK

2 or bifurcation problems.
Recall that, for each open channel, the ratio of the average

separation between resonances to the average resonance width
is 2π. This can also be stated in terms of the decay rates of the
TS region to the bound space and to the continuum, i.e., the
ratio of the former (kr) to the latter (kf) is equal to 2π. As E
increases,kf increases, and consequently, the coupling of the
TS region to the bound region must increase in order to maintain
the average resonance decay rate equal to 1/hF.

The Wigner distribution provides bound-state energies for a
system whose classical dynamics are chaotic. These can be taken
as the centers of the resonances. Because of the nonoverlapping
nature of the resonances belonging to a single open channel
and the independence of the open channels, couplings to the
channel continua do not shift significantly the centers of the
resonances. The average single-channel resonance decay rate
〈Γn〉 is equal to 1/hF, and the statistical fluctuations of the single-
channel decay rates from one resonance to the next follow a
ø-squared distribution with one degree of freedom.

Because the relevant physics is inputted directly, there is no
computation. For a single open channel, the resonance center
energies follow a Wigner distribution, and the partial widths
fluctuate about the value 1/2πF. Multiple open channels are
introduced by adding partial widths for each resonance, starting
at each channel threshold, with the partial widths for each open
channel obtained independently. The result is that (i) the rate
increases, on average, in steps of 1/hF; (ii) the degree of
resonance overlap increases withE; and (iii) fluctuations ink(E)
decrease withE according to the averaging that results from
the successive openings of channels. The introduction of channel

Figure 8. (a) Stick spectrum for a singleφn coupled to 2000φs. The
Vsn matrix elements were drawn from a Gaussian normal distribution
with zero mean and dispersion) 10, analogous to Figure 6c. (b)sni

distribution: arrows indicate the energy region chosen for analysis.
The solid line indicates a Gaussian distribution. Results are averaged
over 10 matrices.

Figure 9. Theφs are zero-order bound states, andφE′ is a continuum.
The lowest TS level is indicated as the threshold for the barrierless
pathway shown. The energy available for reaction coordinate transla-
tional motion in the TS region is labeledE.
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thresholds differs from the random matrixHeff model, which is
an energy-shell model that, by definition, has no channel
thresholds.

The statistical theory of unimolecular decomposition is based
on the assumption that each open channel is independent and
is accessed via a TS level. Though the TS levels are not explicit
in this model, the 2π rule imposes constraints. For example, as
E increases, the rate with which the TS region evolves to its
continuum (kf) increases. The corresponding increase inkr

requires that the TS lies at smallerr. In simple terms, the TS
region, by definition, lies between regions of chaotic and regular
dynamics. The more vigorously the system moves toward the
regular region, the more strongly it must be coupled to the
chaotic region in this balancing act. This stronger coupling can
only occur closer to the molecular region. Such “tightening of
the TS” is an established phenomenon.5,6 This effect holds for
each open channel. Because the channels are independent, so
are their TS properties. For example, when more than one
channel is open, each of the TS levels for the different channels
lies at a different location along the reaction coordinate. The
change in TS location withE is most pronounced for barrierless
reactions just above the channel thresholds.

VI. Summary

Effective Hamiltonian models have been used previously to
model unimolecular decomposition with emphasis on quantum
fluctuation phenomena and bifurcations of the distribution of
widths. Specifically, with the Hilbert space partitioned intoQ
and P subspaces,Heff is approximated asH0 - ipΓ/2. This
random matrixHeff model fails in the regime of overlapping
resonances, where most unimolecular reactions occur.

In this paper, it has been shown that dividing the Hilbert space
into two subspaces, though mathematically exact, stymies
satisfying the requirements of a statistical theory of unimolecular
decomposition. Furthermore, it has been shown that all imple-
mentations to date ofHeff ) H0 - ipΓ/2 are models in which
gateway states couple a manifold of bound levels to continua.
Bound-continuum coupling via gateways states is incompatible
with independent open channels. Therefore, such models cannot
represent unimolecular decomposition in the regime of overlap-
ping resonances. A simple model has been pointed out that
accounts for quantum fluctuations without the aforementioned
problems.
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Appendix A. The 2π Rule

A useful tool for dealing with the regime of overlapping
resonances in unimolecular decomposition is the 2π rule. To
show how this works, a simple calculation is used to obtain the
rate per independent open channel for a microcanonical system
in the statistical limit. Figure 10 shows a two-dimensional
section of the multidimensional phase space, wherex is the
reaction coordinate andpx is its conjugate momentum. Dynami-
cal processes in the molecular region are assumed to be chaotic,
as indicated by the irregular trajectory, while in the product
region, they are regular. It is assumed that the chaotic dynamics
are fast in comparison to dissociation and that they are ergodic,
i.e., the phase space is filled uniformly by trajectories. It is also
assumed that the system exits the chaotic region via a region
of the phase space that separates the chaotic and regular regions
along the reaction coordinate, i.e., the TS region indicated by

the black area in the figure. From the TS, the system is assumed
to proceed to products.

The TS introduced above is for a single open channel.
Consider now the channel having the lowest threshold. The
subsystem consisting of thez- 1 degrees of freedom orthogonal
to the reaction coordinate at the TS, wherez is the total number
of degrees of freedom, is in its lowest energy level. At the TS,
all of the available energy is in one-dimensional translational
motion along the reaction coordinate.

The phase volumes are calculated for a small energy interval,
∆E. The phase volumes of the TS (i.e.,∆VTS) and of the chaotic
region (i.e.,∆V) are given, respectively, by

where integration is carried out over the TS region andF is the
density of states. The phase volume of a singlez-dimensional
state ishz. Thus, the single-channel microcanonical rate coef-
ficient k(1) is given by

where∆VTS/∆V is the probability that the system is in the TS
region andτTS is the transit time through the TS region. Putting
eqs A1 and A2 into eq A3 yields

Using the fact that∆E ) V∆px, whereV ) dx/dt, in the TS
region yields

Because the integral is, by definition, equal toτTS, eq A6
becomes

Thus, the rate coefficient for the lowest open channel is equal
to 1/hF, independent ofE.

Figure 10. Multidimensional classical motion projected onto thex -
px plane. The shaded area and the curves extending into the product
region represent the accessible phase space at energyE. The TS region
separates the molecular and product regions. Trajectories move from
left to right in the upper half-plane and from right to left in the lower
half-plane. Dissociation occurs for positivepx.

∆VTS ) hz-1 ∫TS
dx∆px (A1)

∆V ) hzF∆E (A2)

k(1) )
∆VTS

∆V
1

τTS
(A3)

k(1) ) 1
hF

1
τTS

∫TS
dx

∆px

∆E
(A4)

k(1) ) 1
hF

1
τTS

∫TS

dx
V

(A5)

) 1
hF

1
τTS

∫TS
dt (A6)

k(1) ) 1
hF

(A7)
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The system consisting ofz- 1 degrees of freedom orthogonal
to the reaction coordinate has excited TS levels that constitute
independent open channels. Each follows the prescription given
by eqs A1-A7 and contributes 1/hF to the overall rate. Each
has a TS that is accessed without bias from the chaotic region.
This is why the channels are said to be independent. Thus, the
expression for the microcanonical rate coefficient is given by
k(E) ) K/hF, where K is the number of independent open
channels.

The single-channel rate coefficientk(1) ) 1/hF corresponds
to the average single-channel resonance decay rate〈Γn〉 where
n denotes a generic open channel. The individual single-channel
decay ratesΓi

n correspond to partial widthspΓi
n, where the

subscript denotes specific resonances. This relationship can be
used because, for a given independent open channel, the widths
are mainly nonoverlapping, as seen from the expression

where〈 Γn 〉 ) 1/hF has been used. This constitutes the 2π rule.
It shows that the resonances for a single independent open
channel have modest overlap.

Appendix B. Exact Solution of the Model Problem

Referring to the model problem shown in Figure 5, the
eigenfunctionsψ(E) are expanded in the basis of bound (φn

andφsj) and continuum (φE′′) functions

The coefficients areCn ) 〈φn|ψ(E)〉, Csj ) 〈φsj|ψ(E)〉, andCE′′
) 〈φE′′|ψ(E)〉. TheφE′′ are normalized according to〈φE′|φE′′〉 )
δ(E′ - E′′). To obtain equations for the coefficients, the
Schrödinger equation, (H0 + V)ψ(E) ) Eψ(E), is applied to eq
B1, yielding

whereEn, Esj, andE′′ are eigenvalues ofH0. Projecting eq B2
onto 〈φsi|, 〈φE′|, and〈φn| yields, respectively

whereVsi n ) 〈φsi|V|φn〉, VE′n ) 〈φE′|V|φn〉, andVnE′′ ) 〈φn|V|φE′′〉.
Referring to Figure 5,V has no nonzero off-diagonal matrix
elements among theφsj bound states or among theφE′′ continuum
states. Equation B3 can be inverted to yieldCsi as long asE *
Esi. Because theEsi values are discrete, this poses no difficulty;
E * Esi can always be chosen when evaluatingψ(E). Thus, eq
B3 becomes

where it is understood thatE * Esi. Inverting eq B4 requires
more care becauseE′ varies continuously. ThoughE′ ) E is
certain to occur, eq B4 can be inverted as long as (i)E′ is not
allowed to be equal toE when E - E′ appears in the
denominator, and (ii) a term is added that is present only atE′
) E and satisfies (E - E′) CE′ ) 0. This “residual” term is
proportional toδ(E - E′), and it can be a function ofE. Because
we are dealing with the full Hamiltonian rather than an effective
Hamiltonian, this integration residualz(E) must be real. Thus,
the inversion of eq B4 can be written

The first term in brackets is taken as the principal part upon
integration, and it is assumed thatVE′n in eq B4 is constant (VEn)
for all E′. Thus, the equations for the coefficients become

Together with the normalization ofψ(E), eqs B8-B10 describe
fully the system shown in Figure 5. Substituting eqs B8 and
B9 into eq B10 yields an expression forz(E)

where it is understood that the principal part is taken upon
integration. Thus, for a given set of parameters (En, Esi, VEn,
Vsi n), z(E) is obtained. BecauseVnE is assumed to be independent
of E, the principal part integral in eq B11 vanishes, leaving

Applying the normalization condition〈ψ(E)|ψ(Eh)〉 ) δ(E - Eh)
yields Cn;44 the coefficientsCsi and CE′ are then obtained by
using eqs B8 and B9. With the phase set equal to zero,Cn is
given by

where bothπ2 andz2 arise as integration residuals,44 and eq B8
yields

To summarize, for a given value ofE, z(E) is evaluated by
using eq B12. The expansion coefficients are then obtained by
using eqs B13, B14, and B9. The solution is exact. Because
theψ(E) belong to a continuum, they are not square integrable.

average separation between resonances
average resonance width per open channel

) F-1

〈pΓn〉
(A8)

) 2π (A9)

ψ(E) ) Cnφn + ∑
sj

Csj
φsj

+ ∫ dE′′CE′′φE′′ (B1)

Eψ(E) ) Cn(En + V)φn + ∑
sj

Csj
(Esj

+ V)φsj
+

∫ dEC′′E′′(E′′ + V)φE′′ (B2)

(E - Esi
)Csi

) Vsin
Cn (B3)

(E - E′)CE′ ) VE′nCn (B4)

(E - En)Cn ) ∑
sj

Vnsj
Csj

+ ∫ dE′′VnE′′CE′′ (B5)

Csi
) 1

E - Esi

Vsin
Cn (B6)

CE′ ) VEnCn[ 1
E - E′ + z(E)δ(E - E′)] (B7)

Csi
) CnVsi n

1
E - Esi

(B8)

CE′ ) CnVEn[ 1
E - E′ + z(E)δ(E - E′)] (B9)

Cn(E - En) ) ∑
sj

Csj
Vnsj

+ VnE∫ dE′′CE′′ (B10)

z(E)|VEn|2 ) E - En - ∑
sj

|Vnsj
|2

E - Esj

- ∫ dE′
|VEn|2

E - E′
(B11)

z(E)|VEn|2 ) E - En - ∑
sj

|Vnsj
|2

E - Esj

(B12)

Cn ) 1
|VEn|

1

xπ2 + z2
(B13)

Csi
)

Vsi n

|VEn|
1

E - Esi

1

xπ2 + z2
(B14)
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Instead,〈ψ(Eh)|ψ(E)〉 ) δ(E - Eh). It is easy to take a large
enough number ofψ(E) so that|〈φsi|ψ(E)〉|2 versusE appears
continuous.
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